
ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

1

Application Note

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

Yasset Perez-Riverol a, Julian Uszkoreit b, Aniel Sanchez c, Tobias Ternent a, Noemi del Toro a, Henning

Hermjakob a, Juan Antonio Vizcaíno a,* & Rui Wang a

a European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome
Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
b Ruhr-Universität Bochum, Medizinisches Proteom-Zenter, Medical Bioinformatics, ZKF, E.142,
Universitätsstr. 150, D-44801 Bochum, Germany.
c Department of Proteomics, Center for Genetic Engineering and Biotechnology. Ciudad de la Habana.
Cuba.

Summary: The ms-data-core-api is a free, open-source library for developing computational proteomics
tools and pipelines. The Application Program Interface, written in Java, enables rapid tool creation by
providing a robust, pluggable programming interface and common data model. The data model is based
on controlled vocabularies/ontologies and captures the whole range of data types included in common
proteomics experimental workflows, going from spectra to identifications to quantitative results. The
library contains readers for three of the most used Proteomics Standards Initiative standard file formats:
mzML, mzIdentML, and mzTab. In addition to mzML, it also supports other common mass spectra
formats: dta, ms2, mgf, pkl, apl (text-based), mzXML and mzData (XML-based). Also, it can be used to
read PRIDE XML, the original format used by the PRIDE database, one of the world-leading proteomics
resources. Finally, we present a set of algorithms and tools whose implementation illustrates the
simplicity of developing applications using the library.
	

 2

Supplementary Information Document Contents

1. ms-data-core-api Technical Implementation .. 3
1.1. General Information ... 3
1.2 Design and Implementation (ms-data-core-api) ... 3
1.2.1 Data Model .. 5
1.2.2 Cache Design ... 7
1.2.3 PRIDE Utilities: Computational proteomics functionalities ... 9
1.2.4 Exporting to mzTab ... 11

2. Updated ms-data-core-api dependencies .. 13
2.1 PRIDE XML JAXB .. 13
2.2 jmzML .. 13
2.3 jmzIdentML .. 14
2.4 jmzReader ... 15

3. Algorithms and tools built on top of the ms-data-core-api ... 16
3.1 PRIDE Inspector Toolsuite ... 16
3.2 PRIDE submission pipeline .. 16
3.3 HI-bone ... 17
3.4 Protein Inference Algorithms (PIA) ... 17

4. Coding examples .. 19

5. References ... 22

	

	

	

	

	

	

	

	

	

	

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

3

1. ms-data-core-api Technical Implementation
1.1. General Information

System Requirements:

§ Java: JRE 1.6 +

§ CPU: 2 gigahertz (GHz) or faster 32-bit or 64-bit processor

§ Memory: 2 gigabyte (GB) RAM

§ Hard Disk: 50 MB available

§ Platform: It has been tested on Mac OS X, Linux and Windows

Website of the project:

https://pride-utilities.github.io

Java Documentation (javadoc):

https://pride-utilities.github.io/ms-data-core-api/javaDoc

Wiki Page:

 https://github.com/PRIDE-Utilities/ms-data-core-api/wiki

Source Code:

https://github.com/PRIDE-Utilities/ms-data-core-api

Issues:

https://github.com/PRIDE-Utilities/ms-data-core-api/issues

1.2 Design and Implementation (ms-data-core-api)

The data object module is an abstraction layer between the data and the data representation (Figure 1). It
is implemented using plain Java objects, which are core objects used to handle information across
different input formats. In fact, different formats often don’t have a unified way of representing the same
information, and they may also contain different aspects of experimental details. For instance, spectrum
related metadata in the mzML format (Martens, et al., 2011) and PRIDE XML are formatted differently,
and the peptide and protein identifications in PRIDE XML, mzIdentML (Jones, et al., 2012) and mzTab
formats (Griss, et al., 2014) are represented also in different ways. The data model represents a
standardized view of the information in the underlying data sources. While reading, the raw content

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

4

from the data source is first converted into objects of the data module. This process of data
transformation naturally depends on the input data source and a utility API (Application Programming
Interface) is provided to facilitate the extraction of the information from the original data source.

Figure 1: Data Object Model

The current Data Object Model supports file formats containing spectrum, identification and quantitation
information (Table 1). Specifically, it supports three major PSI (Proteomics Standards Initiative) data
standard formats: mzML, mzIdentML and mzTab. Every file format is read using different file-specific
readers and translated using Transformers to the Data Object Model. The Data Object Model consists of
different classes representing the main data types in proteomics studies such as chromatogram,
spectrum, peptide, protein, etc. A novel cache system was implemented in order to increase the
performance and memory usage of the library. This cache system is especially useful for GUI (Graphical
User Interface) components that require concurrent operations in the same data. Finally, a set of
controllers that extends a general DataAccessController Interface enables the data retrieval from the
Data Object Model.

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

5

Table 1: List of supported file formats

1.2.1 Data Model

The Data Object Model comprises a set of Java classes to model the most relevant information included
in a MS proteomics experiment, going from the sample preparation to the final experimental results
(identification and quantification). All the classes in the Data Object Model extend the ParamGroup
class to store and handle the associated metadata, e.g. protein scores related terms are stored as
controlled vocabulary (CV) terms in the ParamGroup class.

 File Format Used API

Spectra File
Formats

mzML jmzML(Cote, et al., 2010)

mzXML jmzReader(Griss, et al.,
2012)

mzData jmzReader(Griss, et al.,
2012)

Peak files (mgf, ms2,
dta, pkl, apl)

jmzReader(Griss, et al.,
2012)

Identification
File Formats

PRIDE XML pride-jaxb

mzIdentML

jmzIdentML(Reisinger, et
al., 2012)

mzTab
jmzTab (Xu, et al., 2014)

Quantitation
File Format

mzTab jmzTab (Xu, et al., 2014)

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

6

Figure 2: Data Object Model class diagram.

	

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

7

1.2.2 Cache Design

	
The general idea of caching is to reuse content to avoid repeating expensive operations. In the ms-data-
core-api, this is a clear requirement since the average sizes of the experimental output files in proteomics
experiments keep increasing. Therefore, loading the entire file in memory is no longer feasible in many
cases. On the other hand, requesting the data content directly from the source file is often restricted by
the file’s storage media. The processing cost for selecting a value from a file (e.g. spectrum, peptide or
protein) is fairly high when compared to the cost of having the value stored in memory. Therefore it is
plausible to implement caching strategies that keeps frequently used values in the application instead of
retrieving these values from the storage media every time. Most frameworks and tools have integrated
caching mechanisms nowadays.

Latency and hit rate are the two primary factors to consider when designing a cache. We aimed at
achieving a balance between the two while designing the cache for the ms-data-core-api. Therefore, we
offer two levels of caching. For ad-hoc user interactions (such as the selection of a protein or a peptide),
we use the Least Recently Used (LRU) caching algorithm. The main argument behind this algorithm is
that when users select a protein/peptide, they are likely to do further investigation on the selected entity.
For complex interactions (such as the generation of a file wide plot), another level of caching is designed
to enabling the caching of the references between entities and their file system offset. These caching
entries will be always available to avoid a full file scan.

While designing cache strategies, one also needs to balance between memory consumption and
performance. A critical factor when using caching in Java is the size of the cache: when the cache grows
too large, the Java Garbage Collector has to clean-up more often (which consumes time). This can lead
to a gradual degradation of the performance, or the application may even crash if it exceeds the memory
limit.

The ms-data-core-api controls the balance between the memory consumption and fast access to the data
using two-level HashMaps (Figure 3). Most of the objects such as spectrum, peptide, and protein can be
kept in memory for fast access. For this goal, most of the data structures in the API have a key-value
representation. A global map is then used to group all the cache structures. The memory defines a cache
size for each structure in order to avoid out-of-memory problems. Some values such as precursor ion
mass and precursor ion charge are also stored in the cache since these values can frequently be accessed
by third-party tools.

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

8

Figure 3: The design of the cache layer.

 In the cache maps, not only complete objects are stored, the relationships between some frequently
accessed data structures and their properties are also saved. This is one key feature of the library: it
allows fast access to the data without the need to load the complete data structure in memory. For
example, the cache modification map ensures fast access to the modifications of each PSM without the
need to retrieve all the PSMs from the identification file.

The ms-data-core-api depends on a series of libraries and native readers developed by the PRIDE team
and other members of the PSI community. Some of these libraries were improved in terms of
functionality and performance. Specifically, the libraries for the XML-based formats such as jmzML
(Cote, et al., 2010) and jmzIdentML (Reisinger, et al., 2012) were optimized in terms of performance
enabling for the first time to load large mzIdentML files with the corresponding mass spectra files
(Table 2).

% Decrease loading time
compared with previous

version

mzIdentML File size (Mb)

30% 4.62
25% 10.10
3% 21.40
5% 99.00
7% 228.00
1% 228.00

58% 445.00
23% 529.00

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

9

Table 2: Performance benchmark of the new implementation of jmzIdentML library (Reisinger, et al., 2012). The benchmark
was run using different mzIdentML files during the submission process to PRIDE Archive.

1.2.3 PRIDE Utilities: Computational proteomics functionalities

	
One of the dependencies of ms-data-core-api is the PRIDE Utilities library (https://github.com/PRIDE-
Utilities/pride-utilities). The PRIDE Utilities module contains a series of algorithms that extend the
functionality of the ms-data-core-api. The definition of the amino acid mass table, pK values, and
hydrophobic indexes are some of the values defined in PRIDE Utilities. The module also contains the
mappings between different controlled vocabulary (CV) or ontology terms meaning the same concept,
e.g. the ‘b ion’ annotation could be annotated using the PRIDE ontology term ‘PRIDE:0000194’ or the
PSI-MS CV term ‘MS:1001224’. Therefore, these modules homogenize all the terms and concepts used
in metadata annotations. For instance, the library contains the definition of the well-established search
engines and processing software. Also, it contains Java-based functions for string validation and
complex math functions.

Isoelectric point algorithm: The value of the isoelectric point can be used as a filtering technique to
validate peptide identifications (Perez-Riverol, et al., 2012). In the PRIDE Utilities library, the
theoretical isoelectric point for proteins and peptides is calculated using a novel method, published by
Bjellqvist and coworkers (Bjellqvist, et al., 1993). The pI is calculated using pK values of the amino
acids. These values were defined by examining polypeptide migration between pH 4.5 to 7.3 in an
immobilized pH gradient gel environment with 9.2 M and 9.8 M urea. The authors reported a standard
deviation of 0.2 units for the entire pH range. A comparison of the algorithm shows that it works for all
the fractions and a wide range of pH (Perez-Riverol, et al., 2012). In the future some other
implementations could be plugged in the library (Perez-Riverol, et al., 2012).

Gravy Index algorithm: The GRAVY (Grand Average of Hydropathy) value for a peptide or protein is
calculated as the sum of hydropathy values (Kyte and Doolittle, 1982) of all the amino acids, divided by
the number of residues in the sequence. The gravy index can be used to measure the hydrophobicity of a
specific peptide/protein in the sample (Ramos, et al., 2011; Ramos, et al., 2008). The values used for the
different amino acids are the following ones:

Amino acid Value
Ala 1.800

Arg -4.500

Asn -3.500

Asp -3.500

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

10

Cys 2.500

Gln -3.500

Glu -3.500

Gly -0.400

His -3.200

Ile 4.500

Leu 3.800

Lys -3.900

Met 1.900

Phe 2.800

Pro -1.600

Ser -0.800

Thr -0.700

Trp -0.900

Tyr -1.300

Val 4.200

Peptide/Protein Mass: The Peptide/Protein Mass value is computed using each amino acid and the
corresponding protein modifications. It is used to compute the delta mass for every peptide sequence
and PSM. The mass table used is the following one:

.

Amino acid
Mono

Isotopic
Average

Ala 71.03711 71.0788

Arg 156.10111 156.1875

Asn 114.04293 114.1038

Asp 115.02694 115.0886

Cys 103.00919 103.1388

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

11

Gln 128.05858 128.1307

Glu 129.04259 129.1155

Gly 57.02146 57.0519

His 137.05891 137.1411

Ile 113.08406 113.1594

Leu 113.08406 113.1594

Lys 128.09496 128.1741

Met 131.04049 131.1926

Phe 147.06841 147.1766

Pro 97.05276 97.1167

Ser 87.03203 87.0782

Thr 101.04768 101.1051

Trp 186.07931 186.2132

Tyr 163.06333 163.1760

Val 99.06841 99.1326

1.2.4 Exporting to mzTab

The ms-data-core-api library includes a set of exporting options from PRIDE XML and mzIdentML files
to the mzTab format. The exporting options allow the annotation of mzTab files using the mapping
terms from the pride-utilities library and annotate the missing metadata in the original files with default
information (such as searched database, software and protein modifications terms).

The present version also includes a set of filters to select the high-quality data from mzIdentML files.
These filters can be applied when the user is interested in high-quality peptide and protein identifications
and not in including all the complete results available in mzIdentML files in the export to mzTab. The
current version of the filter includes the following rules:

• If there is not a “protein detection protocol” element in mzIdentML (e.g. no protein ambiguity
groups are provided) then the filtering process cannot be done at the protein level directly. In
this case:

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

12

§ If there is no threshold available at the spectrum identification protocol-> The
spectra are filtered using the rank information. Only spectra with rank=1 pass the
filter.

§ If there is a threshold available at the spectrum identification protocol-> The
spectra are filtered using the provided threshold information.

Only the proteins whose PSMs remain after the filtering will be kept in the exported mzTab file.

• If there is a “protein detection protocol” element in mzIdentML, the proteins and protein groups
will be filtered according to the threshold information first.

o After that the filtering by threshold at the peptide level will be applied, because in the
worst-case scenario it will remove only proteins without spectra evidence that pass the
filter. Before, “NoPeptideFilter” was used to avoid inconsistencies with the protein filter.
However, it was observed that some spectra evidences that did not pass the threshold
were included because the threshold was provided but was incorrectly annotated in the
file as “NoThresholdAvailable”. This option minimizes the inclusion of spectra that do
not pass the threshold.

• If there is no threshold information at the protein or peptide level available:
o The spectra are filtered using the PSM rank information. Only PSMs with rank=1 pass

the filter.
o Only the proteins whose PSMs remain after the filtering process will be kept in the

exported mzTab file.

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

13

2. Updated ms-data-core-api dependencies
2.1 PRIDE XML JAXB
	

PRIDE XML JAXB

Website & Source
Code

http://code.google.com/p/pride-toolsuite/wiki/PRIDEXMLJAXB

Description PRIDE XML JAXB library is a library for indexing and parsing PRIDE
XML 2.1 [http://www.ebi.ac.uk/pride/schemaDocumentation.do] files.
Unlike the conventional way of loading XML files, this library does
not load the whole file into the memory up-front, instead it an employs
XML indexing technique to index the file on the fly which results in
fast access and a small memory footprint. Additionally, all entities from
a PRIDE XML file are mapped into objects, and the internal references
between the objects are resolved automatically. This gives direct access
in the object model to entities that are only referenced by ID in the
actual XML file.

License Apache 2 open source license

Language Java

External libraries XXIndex [http://code.google.com/p/pride-toolsuite/wiki/XXIndex]:
Indexing XML files.
JAXB [http://jaxb.java.net/]: Parsing XML snippets into object model.

2.2 jmzML
	

jmzML

Website & Source
Code

http://code.google.com/p/jmzml/

Description jmzML provides a portable and lightweight JAXB-based
implementation of the full mzML 1.1 standard format
(http://www.psidev.info/mzml). mzML files are effectively indexed on
the fly and used as swap files, with only requested snippets of data
loaded from a file when accessing it. Additionally, internal references
in the mzML XML can be resolved automatically by jmzML, giving
direct access in the object model to entities that are only referenced by
ID in the actual XML file. Apart from reading indexed and non-indexed

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

14

mzML files, jmzML also enables the writing of non-indexed mzML
files.

License Apache 2 open source license

Language Java

External libraries XXIndex [http://code.google.com/p/pride-toolsuite/wiki/XXIndex]:
Indexing XML files.
JAXB [http://jaxb.java.net/]: Parsing XML snippets into object model.

	

2.3 jmzIdentML
	

jmzIdentML

Website & Source
Code

https://code.google.com/p/jmzidentml/

Description A Java API to the Proteomics Standards Initiative's mzIdentML format
(version 1.1 - PSI stable version). The mzIdentML data standard
captures peptide and protein identification data, generated from mass
spectrometry. For more information about mzIdentML, see the relevant
googlecode repository: http://code.google.com/p/psi-pi/. The API can
be imported directly as a jar file to provide access to read and write
functionality for mzIdentML. The API builds on top of JAXB
capabilities, by providing an indexing scheme that allows random
access to parts of the file. Under the wiki there are some code snippets
showing example usage.

License Apache 2 open source license

Language Java

External libraries XXIndex [http://code.google.com/p/pride-toolsuite/wiki/XXIndex]:
Indexing XML files.
JAXB [http://jaxb.java.net/]: Parsing XML snippets into object model.

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

15

2.4 jmzReader

jmzReader

Website & Source
Code

https://code.google.com/p/jmzreader/

Description The jmzReader library is a collection of Java APIs to parse the most
commonly used MS peak list formats. Currently, the library contains
parsers for:

• dta
• mgf
• ms2
• mzData
• mzXML
• pkl
• mzML
• apl

All parsers are optimized to be used in conjunction with mzIdentML
(see link in the left panel). Based on a custom build class to efficiently
parse text files line by line all parsers can handle arbitrary large files in
minimal memory, allowing easy and efficient processing of peak list
files using the Java programming language. mzIdentML files do not
contain spectra data but refer to external peak list files. All peak list
parsers support the methods used by mzIdentML to reference external
spectra and implement a common interface. Thus, when developing
software for mzIdentML programmers no longer have to support
multiple peak list file formats but only this one interface.

License Apache 2 open source license

Language Java

External libraries XXIndex [http://code.google.com/p/pride-toolsuite/wiki/XXIndex]:
Indexing XML files.
JAXB [http://jaxb.java.net/]: Parsing XML snippets into object model.

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

16

3. Algorithms and tools built on top of the ms-data-core-api

A set of different algorithms and tools has been developed on top of the ms-data-core-api. In this section
we will describe some of these libraries and tools.

3.1 PRIDE Inspector Toolsuite

The new version of PRIDE Inspector tool (https://github.com/PRIDE-Toolsuite/pride-inspector) makes
use of the ms-data-core-api as the main library for data source handling and representation. The main
goal of this tool is to visualize the ProteomeXchange ‘complete’ submissions in PRIDE (Figure 4).

Figure 4: Protein group visualization panel in PRIDE Inspector (https://github.com/PRIDE-Toolsuite/inspector-example-

files/tree/master/mzIdentML/MS-GF+)

The new PRIDE Inspector 2 supports the visualization of spectra, chromatograms, protein groups,
proteins, PSMs and the corresponding metadata (scores, thresholds, quantitative values, etc).

3.2 PRIDE submission pipeline

The PRIDE database (http://www.ebi.ac.uk/pride/archive/) (Vizcaino, et al., 2013) makes use of the ms-
data-core-api during the submission process of ProteomeXchange ‘complete’ submissions. The
‘complete’ submissions are based on the file formats mzIdentML and PRIDE XML. Additionally, they
also contain a set of mass spectra files associated with the identification files that are handled during the
submission process. All the properties related with each assay such as samples details, instruments,
number of identified proteins, number of unique peptides, among others, are retrieved from the files
using the ms-data-core-api (Figure 5).

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

17

Figure 5: Assay view in the PRIDE Archive web showing the information coming from a PRIDE XML file (number of proteins, peptides,

unique peptides, total number of spectra, etc).

3.3 HI-bone

	
HI-bone (Perez-Riverol, et al., 2013) is an approach for scoring MS/MS identifications based on the
high mass accuracy matching of precursor ions, the identification of a high intensity b1 fragment ion,
and partial sequence tags from phenylthiocarbamoyl-derivatized peptides. This derivatization process
boosts the b1 fragment ion signal, which turns it into a powerful feature for peptide identification. The
ms-data-core-api is used to retrieve the information of each spectrum and to store the results.

3.4 Protein Inference Algorithms (PIA)

The Protein Inference Algorithm (PIA) suite (https://github.com/mpc-bioinformatics/pia) written in
Java, includes a fully parametrisable web-interface (using Java Server Faces), which combines PSMs
from different experiments and/or search engines, and reports consistent and comparable results (Figure
6). None of the parameters for the protein inference process (e.g. filtering or scoring), are fixed like in
prior approaches. Instead they are held as flexible as possible, to enable any adjustments needed by the
user.

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

18

Figure 6: PIA web interface.

The library was built on top of the ms-data-core-api demonstrating that the developers only need to
focus on the new algorithms and tools avoiding details related with the common data structures and file
handling. The PIA set of algorithms can be applied to all the ms-data-core-api supported formats
containing peptide identification data (PRIDE XML, mzIdentML and mzTab).

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

19

4. Coding examples

A list of examples can be found in the GitHub page of the project (https://github.com/PRIDE-
Utilities/ms-data-core-api).

4.1 Read an mzXML file

//Reading an mzXML file

DataAccessController mzXmlController = new MzXmlControllerImpl(new File(filename.mzXML));

List<Comparable> ids = new ArrayList<Comparable>(mzXmlController.getSpectrumIds());

assertTrue("The id of the first spectra should be", ids.contains("1"));

//Return the first spectrum from an mzXML file

Spectrum spectrum = mzXmlController.getSpectrumById(ids.get(0));

--

4.2 Read an mzIdentML file

--

//Reading a mzIdentML file

mzIdentMlController = new MzIdentMLControllerImpl(new File(“identification.mzid”));

List<Sample> samples = mzIdentMlController.getSamples();

//Checking the contact details

List<Person> persons = mzIdentMlController.getPersonContacts();

--

4.3 Retrieve the isoelectric point of all the identified peptides

--

//Reading a mzIdentML file

mzIdentMlController = new MzIdentMLControllerImpl(new File(“identification.mzid”));

//Retrieve all Protein Ids

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

20

Collection<Comparable> proteinIds = mzIdentMlController.getProteinIds();

for(Comparable proteinID: proteinIds){

Collection<Comparable> peptideIds = mzIdentMlController.getPeptideIds(proteinID);

//Retrieve for every Protein the corresponding Peptides

for(Comparable peptideId: peptideIds){

 //Compute the isoelectric point

System.out.println(IsoelectricPointUtils.calculate(mzIdentMlController.getPeptideSequence(
proteinID,peptideId)));

}

}

--

4.4 Export PRIDE XML to mzTab

--

//Reading a mzIdentML file

controller = new PRIDEControllerImpl(new File(“identification.xml”));

// Create the exporter

AbstractMzTabConverter mzTabconverter = new PRIDETabConverter(controller);

//Create a checker to analyze the exported file
MZTabFile mzTabFile = mzTabconverter.getMZTabFile();
MZTabFileConverter checker = new MZTabFileConverter();
checker.check(mzTabFile);

//Export to an output file
mzTabFile.printMZTab(new FileOutputStream("output.mztab"));

--

4.5 Export mzIdentML information and protein inference to mzTab

controller = new MzIdentMLControllerImpl(new File(“identification.mzid”));

PIAModeller piaModeller = new PIAModeller();

CvScore cvScore = null;

String scoreAccession = null;

// try to get the main-score

for (SearchEngineScoreCvTermReference termRef : controller.getAvailablePeptideLevelScores()) {

 CvScore newCvScore;

 scoreAccession = termRef.getAccession();

 newCvScore = CvScore.getCvRefByAccession(termRef.getAccession());

 if ((newCvScore != null) && newCvScore.getIsMainScore()) {

 cvScore = newCvScore;

 scoreAccession = cvScore.getAccession();

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

21

 break;

 }

}

// add the input file to modeller and import data

Integer controllerID = piaModeller.addPrideControllerAsInput(controller);

piaModeller.importAllDataFromFile(controllerID);

// first create the intermediate structure from the data given by the controller

piaModeller.buildIntermediateStructure();

PeptideScoring pepScoring = new PeptideScoringUseBestPSM(scoreAccession, false);

ProteinScoring protScoring;

if ((cvScore != null) && !cvScore.getHigherScoreBetter()) {

 protScoring = new ProteinScoringMultiplicative(false, pepScoring);

} else {

 protScoring = new ProteinScoringAdditive(false, pepScoring);

}

// perform the protein inferences

piaModeller.getProteinModeller().infereProteins(pepScoring, protScoring, OccamsRazorInference.class,
null, false);

// create the protein groups

int nrGroups = piaModeller.getProteinModeller().getInferredProteins().size();

Map<Comparable, Map<Comparable, List<Comparable>>> prideProteinGroupMapping = new HashMap<Comparable,
Map<Comparable,List<Comparable>>>(nrGroups);

for (InferenceProteinGroup piaGroup : piaModeller.getProteinModeller().getInferredProteins()) {

 Map<Comparable, List<Comparable>> proteinPeptideMap = null;

 Set<IntermediateProtein> proteinSet = new HashSet<IntermediateProtein>(piaGroup.getProteins());

 // include the subGroups

 for (InferenceProteinGroup subGroup : piaGroup.getSubGroups()) {

 proteinSet.addAll(subGroup.getProteins());

 }

 proteinPeptideMap = new HashMap<Comparable, List<Comparable>>(proteinSet.size());

 for (IntermediateProtein protein : proteinSet) {

 Comparable proteinID = ((PrideIntermediateProtein)protein).getPrideProteinID();

 proteinPeptideMap.put(proteinID, null);

 }

 prideProteinGroupMapping.put(piaGroup.getID(), proteinPeptideMap);

}

//Set the protein groups and inference information in the current model.

controller.setInferredProteinGroups(prideProteinGroupMapping);

//Export to mzTab

AbstractMzTabConverter mzTabconverter = new MzIdentMLMzTabConverter(controller);

MZTabFile mzTabFile = mzTabconverter.getMZTabFile();

MZTabFileConverter checker = new MZTabFileConverter();

checker.check(mzTabFile);

//Export to an output file

mzTabFile.printMZTab(new FileOutputStream("output.mztab"));

ms-data-core-api: An open-source, metadata-oriented library for computational proteomics

22

5. References
	

Bjellqvist, B., et al. The focusing positions of polypeptides in immobilized pH gradients can be predicted from
their amino acid sequences. Electrophoresis 1993;14(10):1023-1031.
Cote, R.G., Reisinger, F. and Martens, L. jmzML, an open-source Java API for mzML, the PSI standard for MS
data. Proteomics 2010;10(7):1332-1335.
Griss, J., et al. The mzTab data exchange format: communicating mass-spectrometry-based proteomics and
metabolomics experimental results to a wider audience. Molecular & cellular proteomics : MCP
2014;13(10):2765-2775.
Griss, J., et al. jmzReader: A Java parser library to process and visualize multiple text and XML-based mass
spectrometry data formats. Proteomics 2012;12(6):795-798.
Jones, A.R., et al. The mzIdentML data standard for mass spectrometry-based proteomics results. Molecular &
cellular proteomics : MCP 2012;11(7):M111 014381.
Kyte, J. and Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. Journal of
molecular biology 1982;157(1):105-132.
Martens, L., et al. mzML--a community standard for mass spectrometry data. Molecular & cellular proteomics :
MCP 2011;10(1):R110 000133.
Perez-Riverol, Y., et al. Isoelectric point optimization using peptide descriptors and support vector machines.
Journal of proteomics 2012;75(7):2269-2274.
Perez-Riverol, Y., et al. HI-bone: a scoring system for identifying phenylisothiocyanate-derivatized peptides
based on precursor mass and high intensity fragment ions. Analytical chemistry 2013;85(7):3515-3520.
Ramos, Y., et al. Peptide fractionation by acid pH SDS-free electrophoresis. Electrophoresis 2011;32(11):1323-
1326.
Ramos, Y., et al. Proteomics based on peptide fractionation by SDS-free PAGE. Journal of proteome research
2008;7(6):2427-2434.
Reisinger, F., et al. jmzIdentML API: A Java interface to the mzIdentML standard for peptide and protein
identification data. Proteomics 2012;12(6):790-794.
Vizcaino, J.A., et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013.
Nucleic acids research 2013;41(Database issue):D1063-1069.
Xu, Q.W., et al. jmzTab: a java interface to the mzTab data standard. Proteomics 2014;14(11):1328-1332.

